Recognizing, Assessing, Controlling & Evaluating Hazards

Recognizing Hazards

A hazard is any practice, behaviour or physical condition that can cause;

Three Steps to Hazard Identification

Step 1: Process Identification

In order to identify hazards you must first determine what processes take place within a facility. Examples of processes may include;

Step 2: Task Identification

The second step is to determine what tasks are performed within the processes. For example, here are some of the tasks that are typically carried out by maintenance personnel

Step 3: Hazards within the Task

The third step in this process is to recognize the hazards within each task. This concept is referred to as P.E.M.E.P. because all identified hazards will fall into one of five categories. These categories are;

Examples of Hazards Associated with P.E.M.E.P.

Hazards that people create include;

Hazards that exist when using equipment may include;

Hazards that are associated with materials in the workplace may include;

Hazards in the work environment may include;

Hazards that can be associated with processes may include;

Assessing Hazards

Once you have identified the hazards that are present, some method of prioritizing must be established to ensure controls are applied to the most serious risks first. There are a number of methods available to assist in the assessment of hazards. These methods can help committee members determine which of the identified hazards could potentially cause the most serious injury.

One example of an assessment method is to determine airborne hazards through air sampling or constant monitoring depending on the situation.  Testing can be initiated by the committee because of a request made by workers; or to test and benchmark current conditions to determine the level of hazard prior to the implementation of a control; or once implemented, to evaluate a hazard control to determine its effectiveness.

The employer is responsible for having the monitoring conducted in the workplace and a committee is entitled to information from the employer about testing and the outcome.

A designated member who represents workers is also entitled to be present at the beginning of testing, to ensure the validity of test procedures and results.

When assessing a hazard we must have an idea of accepted norms in order to judge the situation. For instance, when we take a sample of air we need to know what we are looking for, the level of acceptable exposure for workers without personal protection, and when we need to consider hazard elimination, substitution or isolation techniques.  In Ontario, we look to Regulation 833: Control of Exposure to Biological or Chemical Agents (a regulation made under the Act) to provide guidance. The Ontario Ministry of Labour generally accepts threshold limit values as published by the American Conference of Governmental Industrial Hygienists, a non-profit organization based in the United States. These values list acceptable exposure levels to which an average worker can be exposed to without any adverse health effects.

The following list contains laws, standards, guidelines and codes against which you can compare hazardous conditions;

Hazards can be assigned a priority classification to help with scheduling and implementation of hazard controls as recommended by the committee. Many classification methods exist and it is up to the committee to adopt the most logical solution. The following is one method;

Hazard Controls

Once hazards have been identified and assessed, the next step in the process is to determine the effectiveness of existing controls and suggest improvements that may be necessary. Or, in the case of existing controls, determine their effectiveness.

Controls may be applied in a number of ways and in three different locations;

1. At the Source: Whenever possible consider the best way to control a hazard is to apply the control at the source of the hazard. The ultimate control is actual removal of the hazard from the workplace however that may not be prudent, acceptable, logical or feasible.

2. Along the Path: Controls along the path do not remove the hazard, but provide methods to alert the worker that a hazard exists. The goal is to minimize worker exposure.

3. At the Worker: Controls at the worker include personal protective equipment (P.P.E.), training in safe work methods, administrative procedures and disciplinary actions. Controls at the worker may be subject to human error and should be considered the last alternative in a list of hazard controls, especially in the case of P.P.E. Simply put, sometimes workers don’t wear their P.P.E. correctly or not at all and therefore this control can be difficult to monitor and evaluate.

A variety of hazard controls may exist in the workplace, or in many situation, a customized approach is required. There are three basic classifications of hazard controls, they are;

Engineering Controls include;

Administrative Controls include;

Personal Protective Equipment includes;

Priority should be given to attempts that control hazards at the source using engineering controls while ensuring the very last type of control to consider is P.P.E. at the worker. This is true because should the P.P.E. fail, nothing is left in place to protect the worker from the hazards. The best case scenario would include the implementation of multiple controls implemented with a variety of backup controls in place should any one layer of protection fail.  An example of multiple controls for an environment such as a hazardous storage room may include but are not limited to;

Control Evaluation

Once hazard controls have been implemented they must be evaluated to determine their effectiveness and to assess if the intent of the control is being met.  It is important that hazard control recommendations do not inadvertently introduce a subsequent hazard while taking steps to eliminate, reduce or control another. An example of this would include the introduction of anti-fatigue or ergonomic floor mats that are located a work stations throughout the plant. A slip and trip hazard may be inadvertently introduced and must be considered prior to implementation.

During an evaluation, members can determine the effectiveness of controls by;

Committee members need to determine how a hazard control can be evaluated long before it is implemented. A good idea for a hazard control must be accompanied by a quantifiable methodology that will help to determine if the hazard control is meeting or exceeding the goals.  Committee members need to consider;


Looking to become more proficient with your RACE methodology utilization? Download our RACE hazard management tool today!



Do you want to receive the latest and safest news directly to your inbox?

It’s easy! Press the button below to subscribe!